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ABSTRACT 

The systems for occupant protection in passive vehicle safety are primarily developed with single statistical 

representations of humans, so-called Anthropomorphic Test Devices (ATDs). Unfortunately, those ATDs cover 

additional features like age and body shape insufficiently during development. Augmenting finite element 

simulations with a metamodel trained by machine learning is promising to overcome this barrier. However, the 

database design, the machine learning architecture, and the requirements for quality and robustness influence each 

other. Therefore, objective criteria must be defined to compare the alternatives taking cost and benefit aspects 

under changing preferences into account. Having complex criteria can be framed as a multi-attribute decision-

making problem. This paper's objective is the development of a transparent assessment scheme for virtual 

statistical simulation for rapid vehicle occupant safety assessment using supervised learning. 

PROMETHEE is selected as an appropriate decision-making approach. A process, consisting of a sequential 

definition of the criteria leading to the final assessment, is proposed to adapt the method in this paper's domain. 

The methodology is tested on sample alternatives, generated using a calibration-type machine learning 

architecture and data from finite element simulations. The original PROMETHEE algorithm cannot handle a vast 

number of alternatives. Since, typically, numerous alternatives occur during the development of a machine 

learning application, a sorting-based modification is implemented. 

Finally, the findings are discussed, and recommendations for related use cases are given. The proposed method 

seems applicable to the described domain and near-related ones. Moreover, multiple tendencies between an 

alternative's parameters and rank can be identified in the test samples. 

INTRODUCTION 

In the recent years, passive vehicle safety has been dominated by the increasing virtualisation of assessment 

methods. Historically, crash tests are performed with real prototypes. A single virtual, physical simulation 

utilising, e. g. Finite Element Analysis (FEA), comes with significantly lower cost, higher flexibility, and an 

unmatched insight into the physical processes. However, the virtual simulations must fit the reality sufficiently, 

which makes extensive validation necessary. The degree of model detail and computational effort has been 

increased to fulfil the demand for trustworthy models. Nowadays, an industrial simulation on state-of-the-art 

hardware takes hours to days. Multiple developments led to the need for further acceleration of virtual methods: 

(i) shorter product cycles require rapid assessment; (ii) increased parameter spaces make more efficient methods 

for a sufficient assessment necessary; (iii) Euro NCAP recently proposed in [1] scenario-based virtual testing; 

(iv) the development in autonomous driving will introduce a broad range of allowed sitting positions and activities 

during driving, as stated by Östling et al. in [2]; (v) the population of vehicle occupants is significantly more 

diverse than it was when the anthropometrics for the state-of-the-art crash test dummies were developed, as 

concluded by Reed et al. in [3] and Wang et al. in [4]. Those dummies, so-called anthropomorphic test devices 

(ATDs), are technical measuring devices. They are the 5th, 50th, and 95th percentile representations of the North 

American population in the 1970s [5]. 
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This paper proposes a method to develop a transparent assessment scheme for virtual statistical simulation for 

rapid vehicle occupant safety assessment using supervised learning. The methodology was tested on vehicle 

occupant safety assessment, specifically on the front crash case for passengers. The data originated from a 

simplified 2D FEA-model. The machine learning architecture contained a calibration approach introduced by 

Plaschkies et al. in [6] with supervised learning techniques. 

Next to other influences, the above-described development sparked various publications of machine learning 

applications in the passive safety assessment, as summarised by Plaschkies et al. in [5]. The identified studies 

focused on prediction quality metrics like accuracy to assess and compare their investigated approaches. However, 

machine learning notably depends on the amount and quality of data leading to complex metrics with interacting 

parameters. Therefore, the trade-off between data generation costs and their value for the method must be 

represented. Approaches from Multi-Criteria Decision Making (MCDM) can provide a transparent way to 

compare different alternatives regarding multiple criteria to solve a particular problem. 

STATE-OF-THE-ART BASED SELECTION OF THE DECISION-MAKING METHOD 

Decision-making is a centuries-old problem; many publications have been dedicated to this topic. Hence, some 

assumptions must be declared before entering the state-of-the-art. Moreover, the problem described above implies 

a discrete nature of the alternatives. Furthermore, presumably, some criteria can be only described on an ordinal 

scale like a grading system. Finally, the purpose is to select the best alternatives from a given set, or to check, if 

a new alternative is beneficial. The complex situation will probably lead to numerous alternatives. 

According to Hwang et al. in [7], the application of MCDM is widespread. However, there are some common 

characteristics between them: (i) incommensurable units, (ii) conflict between criteria, (iii) multiple 

objectives/attributes, and (iv) design/selection. 

Some authors have divided MCDM into two categories. First, Multi-Attribute Decision-Making (MADM) focuses 

on problems with discrete decision spaces. Second, Multi-Objective Decision-Making (MODM) problems involve 

several competing objectives that need to be optimised simultaneously [8]. 

An MODM problem is associated with the problem of designing optimal solutions through mathematical 

programming. The number of possible decision alternatives can be immense. Usually, the decision space is 

continuous [9]. As common characteristics, MODM methods have: (i) a set of quantifiable objectives, (ii) a set of 

well-defined constraints, and (iii) a process of obtaining some trade-off information between quantifiable 

objectives and non-quantifiable objectives [7]. 

MADM requires that the choice is being made with clearly defined criteria. MADM problems have predetermined 

and limited number of alternatives; hence the decision space is discrete. Solving a MADM problem requires 

ordering and ranking [9, 10]. 

Comparing MODM and MADM, MADM seem to suit better the peculiarities of this paper's problem. The 

evaluation within a discrete decision space with predefined alternatives and criteria fits the declared assumptions. 

The number of alternatives is finite, although large. 

Majdi divides in [11] MADM into four groups: Cost-Benefit Analysis (CBA), Elementary, Multi-Attribute Utility 

Theory (MAUT), and Outranking. CBA evaluates on a monetary basis the costs and benefits of the alternatives. 

Elementary methods do not need computation support and can be used with a few alternatives and criteria with a 

single decision-maker [12]. Examples of elementary methods are the Pros and Cons Analysis, the Maximin, and 

the Maximax Methods [11]. 

For the MAUT methods, Winterfeldt et al. described in [11, 13 apud] the procedure as: (i) evaluate alternatives, 

(ii) assign weights, (iii) aggregate the weights of attributes and alternative scores, and (iv) perform sensitivity 

analyses and make recommendations. For example, the Analytic Hierarchy Process (AHP) is a widely used 

method in this class. Advantages are the possibility to use qualitative and quantitative criteria and good traceability 

[14]. 

Outranking methods require specifying alternatives, criteria, and the use of data from the decision table. For 

example, the ELECTRE family (ELimination Et Choix Traduisant la REalite) consists of seven different models 

derived from the original one. The result is the smallest set of the best alternatives while providing no ranking 

with such a set [14]. 

The PROMETHEE approach (Preference Ranking Organisation Method for Enrichment Evaluations), described 

by Brans et al. in [15], is another outranking method based on extensions of the notion of criteria and can be 

relatively rapidly built by the decision maker. There are two base possibilities to provide rankings in this method: 

PROMETHEE I provide a partial pre-order, and PROMETHEE II the total pre-order. As per de Almeida et al. in 

[16], the method was for example extended for a range assessment in PROMETHEE III and the application on 

continuous decision spaces in PROMETHEE IV. According to Brans et al., PROMETHEE II is easier to handle 

by the decision maker. However, PROMETHEE I contain more realistic information, especially regarding 

incompatibilities [17]. 
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PROMETHEE I considers the intersection between the positive and negative flows in a partial pre-order between 

the alternatives. The ranking of this partial pre-order can be represented as a network graph and contains 

information on the comparability of two alternatives. Non-comparability equals a not confirmed outrank. The 

combination of in- and out-flow determines if one alternative is outranking another or is indifferent. 

PROMETHEE II classifies the alternatives, establishing a complete pre-order among all the alternatives using the 

net-flow. The alternatives with the higher net-flow are preferred over the ones with a lower net-flow. 

Disadvantage of this method is that it is hard to keep an overview of the problem when many criteria are involved, 

and it can be time-consuming [14]. Despite those drawbacks, PROMETHEE was selected since it is widely used, 

does not require normalisation, and is applicable even when information is missing. Furthermore, there are many 

methods to assist in choosing the best option from a set of alternatives based on multiple criteria. However, it can 

be challenging to assess which method is the most appropriate to use in each situation or even which questions to 

ask when comparing various methods [18]. 

The original PROMETHEE algorithm described by Brans et al. in [15] is displayed on the left side of Table 1. 

Equation (1) represents the preference 𝜋 for the criterion 𝑘 of the alternative 𝑎𝑖 over another alternative 𝑥. For the 

sake of simplicity a usual preference function was used here to evaluate the criteria value 𝑓. Each criterion has a 

weight 𝑤 assigned by the decision maker. Again, for simplicity, an equal weight for all 𝑞 criteria were chosen. In 

the first step, the preference of one alternative over all other alternatives is calculated according to equation (3), 

where 𝑛 is the total number of alternatives 𝐴. Next, the PROMETHEE I in-flow 𝜙+ by equation (4) and out-flow 

𝜙− by equation (6) is determined. Finally, the PROMETHEE II total pre-order in form of the net-flow 𝜙 is derived 

in equation (9). 

Analysing the algorithm, the time complexity is 𝒪(𝑞𝑛2). PROMETHEE is a fully deterministic procedure; the 

same input will lead to the same output. However, there are some instabilities regarding the pre-order; also 

described, e. g. by de Keyser et al. in [19], as the reverse rank problem. While in the direct comparison of two 

alternatives, the preference matrix remains the same, the flow calculation introduces a dependency of the pre-

order on the compared alternatives. The reverse rank problem requires the re-assessment of all alternatives if a 

new one is added. Revisiting the above-declared assumptions and the time complexity, PROMETHEE seems to 

face a significant hurdle. 

Calders et al. proposed in [20] an adaption of the original algorithm achieving a time complexity of 𝒪(𝑞𝑛 log 𝑛). 

This massively reduced complexity enables the computation of huge numbers of alternatives. As shown on the 

right side of Table 1, the uni-criterion flows are calculated according to equations (5), (7), and (8) as the initial 

step. Calders et al. observed that the values of a criterion per alternative can be sorted individually, allowing to 

infuse established and highly efficient sorting algorithms leading finally to reduced time complexity. Comparing 

equations (11) and (12), it becomes clear that for PROMETHEE II, the complete pre-order is for both methods 

the same. As a drawback, only the PROMETHEE II result can be obtained. 

Table 1. 

Comparison of original and sorting-based algorithms 

𝜋𝑘(𝑎𝑖 , 𝑥) = {
0 if 𝑓𝑘(𝑎𝑖) ≥ 𝑓𝑘(𝑥)

1 if 𝑓𝑘(𝑎𝑖) < 𝑓𝑘(𝑥)
 (1) 

𝑤𝑘 = 1
𝑞⁄  (2) 

Original PROMETHEE I & II [15] Sorting Based PROMETHEE II [20] 

𝜋(𝑎𝑖 , 𝑥) = ∑[𝑤𝑘 ∗ 𝜋𝑘(𝑎𝑖 , 𝑥)]

𝑞

𝑘=1

 (3)   

𝜙+(𝑎𝑖) =
1

𝑛 − 1
∑ 𝜋(𝑎𝑖 , 𝑥)

𝑥∈𝐴

 (4) 𝜙𝑘
+(𝑎𝑖) =

1

𝑛 − 1
∑ 𝜋𝑘(𝑎𝑖 , 𝑥)

𝑥∈𝐴

 (5) 

𝜙−(𝑎𝑖) =
1

𝑛 − 1
∑ 𝜋(𝑥, 𝑎𝑖)

𝑥∈𝐴

 (6) 𝜙𝑘
−(𝑎𝑖) =

1

𝑛 − 1
∑ 𝜋𝑘(𝑥, 𝑎𝑖)

𝑥∈𝐴

 (7) 

  𝜙𝑘(𝑎𝑖) = 𝜙𝑘
+(𝑎𝑖) − 𝜙𝑘

−(𝑎𝑖) (8) 

𝜙(𝑎𝑖) = 𝜙+(𝑎𝑖) − 𝜙−(𝑎𝑖) (9) 𝜙(𝑎𝑖) = ∑[𝑤𝑘 ∗ 𝜙𝑘(𝑎𝑖)]

𝑞

𝑘=1

 (10) 

𝜙(𝑎𝑖) =
1

𝑞(𝑛 − 1)
∑ [∑[𝜋𝑘(𝑎𝑖 , 𝑥) − 𝜋𝑘(𝑥, 𝑎𝑖)]

𝑞

𝑘=1

]

𝑥∈𝐴

 (11) 𝜙(𝑎𝑖) =
1

𝑞(𝑛 − 1)
∑ [∑[𝜋𝑘(𝑎𝑖 , 𝑥) − 𝜋𝑘(𝑥, 𝑎𝑖)]

𝑥∈𝐴

]

𝑞

𝑘=1

 (12) 
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PROPOSED METHOD 

In this paper a stepwise method to the MCDM problem is proposed. As displayed in Figure 1, the approach 

consists of the definition of an initial criteria list, the derivation of a final criteria list, and the decision making. 

  
Figure 1. Proposed method flow 

Initial Criteria List 

     Brainstorming phase To define criteria, a brainstorming session with experts is proposed. Categories of cost 

and use factors can support collecting the criteria. 

The central use of a metamodel is determined by its estimation quality. This quality should not only be defined 

by typical metrics such as accuracy or recall but also consider the detail of degree and the relevance of an 

estimation. Furthermore, the difference in result generation between the assessed alternative and the simple FEA 

simulation can be considered. 

The main cost factor is induced by the data for training and assessment of the metamodel. If the architecture 

requires additional data as input for each estimation, it adds to the costs. Depending on the data volume, the 

computational cost for the training and assessment cycle and even per prediction can be relevant. 

The end of a model's validity should be considered. In this case, additional costs through data generation for 

retraining the metamodel will occur. Furthermore, it is assumed that over time and continuous development, the 

vehicle deviates increasingly from the ones used for metamodel training. Hence, a later loss of validity – or a 

wider validity range – would mean a higher model value. 

     Review & specification phase Typically, brainstorming techniques are suitable for collecting ideas 

efficiently; however, completeness is not guaranteed. Hence, a review checking the inner logic and completeness 

of the criteria is recommendable. Dropping criteria in this step is unnecessary; this will be done in the final 

specification phase. 

During the review phase, the reporting scale and assessment method should be defined for each criterion. The 

reporting scale will influence the selection of a suitable MADM method. The assessment method's exact definition 

will help to review the selected criteria and is the prerequisite for the later steps. Since criteria for the actual 

assessment should be selected later, the documentation of each criterion and its motivation is necessary. 

Derivation of the Final Criteria List 

Ideally, the list of criteria from the above steps can assess all relevant aspects of possible alternatives. However, 

highly correlated criteria are likely to occur since the described approach prefers adding criteria over dropping 

them. Therefore, the authors propose to create multiple samples of alternatives. Those should be used to test the 

validity and plausibility of the defined assessment algorithms and for another review phase. The samples can 

support the identification of highly correlated criteria. Those criteria would potentially assess the same aspect; 

hence assign a higher weight to such an aspect.  

It must be noted that the sample alternatives will not cover all possible cases. Henceforth, expert opinion is needed 

to interpret the findings correctly. Each criterion and the related findings should be discussed considering the 

aspects described in Table 2. 

Table 2. 

Aspects to consider during criterion-selection 

Representativeness 

The representativeness of the generated samples determines if the criteria are correct and meaningful and represent 

diverse aspects of the problem.  

Correlation 

Correlated criteria should be merged to avoid unwanted higher weights on a specific aspect. Invariant criteria should be 

inspected if the invariance is only due to the generated samples or meaningful for the overall problem. In the first case, 

the criterion can remain, in the ladder, dropped. 

Transparency & Directness 

The criteria should be grouped into meaningful categories to support a transparent rating scheme. It depends on the actual 

use case to which category an aggregated criterium fits. Another aspect regarding transparency is the understandability of 

a criterium. A directly assessed criterium is more straightforward to process and understand than one resulting from 

complex calculations. 
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Level of the scales 

Ultimately, the reporting scale of a criterion should be considered. Typically, nominal-, ordinal-, interval-, and ratio-

scales are used, where nominal has the lowest and ratio the highest level. The lowest-level scale of all used ones will 

determine which MCDM method can be utilised. Not all criteria can be assessed on ratio scales. However, if possible, the 

higher-level scale always seems preferable. 

Multi-Attribute Decision Making 

Following the state-of-the-art analysis, to solve the decision-making problem, the PROMETHEE II method was 

selected. The adaption of Calders et al. in [20] seems recommendable to deal with the expected high number of 

alternatives despite the loss of the PROMETHEE I result. 

The method required selecting a preference function; it is influenced by the lowest scale order and the user's taste. 

If of all criteria, the lowest order scale is ordinal, only the usual-criterion can be used. Other definitions, like the 

linear- or step-criterion, require proportional intervals between the variables. 

APPLICATION 

Computations were executed on a workstation equipped with an Intel Xeon W-2123 CPU with 3.6 GHz and 64 GB 

RAM. The cluster used for the larger FE-simulations had per node two Intel Xeon E5-2687W v4 CPUs with 

3 GHz. 

All described algorithms were implemented in Python 3.8. The neural network used for machine learning was 

taken from the Scikit-Learn library [21] version 1.0.1. Database-related operations like sorting were done utilising 

the Pandas library [22] version 1.4.2. All FE-simulations were performed in LS-Dyna 10.0 (MPP on cluster, SMP 

on workstation) with single precision. 

Database 

     FE-model To test the method assessment approach, a database from a recent study [6] was used. The 

simulations were done with a 2D rigid body model, as shown in Figure 2, representing an occupant undergoing a 

frontal crash. Five anthropometrical configurations were created, orienting on the common crash test dummies 

with the 5th, 50th, and 95th percentiles. The 25th and 75th percentiles were added by interpolation. A Full Factorial 

Design of Experiment (DoE) was defined, containing the variation of backrest angle, seat ramp angle, impact 

speed, and the force of the shoulder belt load limiter. Each factor was varied in six levels, and the resulting DOE 

of size 1,296 was repeated for the five occupant sizes leading to a total of 6,480 simulations. 

 
Figure 2. Occupant model 2D 

The model has not been validated; thus, the physical behaviour seems overall plausible. Few simulations suffered 

numerical instabilities and were dropped as outliers. Following the recent study, the maximum resultant chest 

acceleration lasting at least 3 ms aChest,a3ms and the maximum head forward displacement relative to the vehicle 

xHead,Local was selected for the investigations. The selection was motivated by stable numerical outputs, the model's 

capabilities, and biomechanical relevance. 

For the seat, a motion was prescribed, taking the pulse generated by FE-simulation with a Toyota Yaris 2010 

model [23]. The load cases were defined as vehicles crashing frontally into a rigid barrier with different velocities. 

One crash simulation took approximately three hours using a single node on the cluster. In comparison, one 

occupant simulation on the workstation accounted for approximately three minutes. 

     Machine learning architecture For the machine learning, in a previous study [6] an architecture was sketched 

as depicted in Figure 3. The key characteristic of this architecture is the hybrid approach of providing a calibration 

simulation for each prediction. The calibration is a physical simulation of an anthropometrical reference 

configuration. The predicted outputs of the metamodel are selected results of different anthropometrical 
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configurations, but in the same vehicle environment as the reference. As learning algorithm, a deep neural network 

with two hidden layers was selected. 

 
Figure 3. Machine learning architecture in [6] 

For later assessment, a characterisation of the environment must be defined. Vehicle parameters are not explicitly 

given but implicitly contained in the calibration simulation. The advantage is that changes in vehicles that are 

different than expected or unquantifiable can be covered. The drawback, however, is an unclear defined field of 

variation in which the metamodel was trained, the so-called validity field. Hence, the transition between 

interpolation and extrapolation cannot be derived directly. However, the calibration simulation contains 

information on the environment since a unique setting will result in a unique response. 

In the case of the used 2D model, the occupant's behaviour can be described by the kinematics of the joint and 

endpoints (head, shoulder, elbow, hand, hip, knee, foot). The relative displacement to the vehicle of those points 

and the global acceleration provides sufficient insight. To measure the position of an environment relative to the 

validity field in a transparent manner, a reduction to one or two dimensions seems necessary. 

Principal Component Analysis (PCA) was selected, and its Scikit-Learn implementation was used. This linear and 

self-centring method derives from high dimensional data principal components by eigenvalue decomposition, 

explaining the variance in the data. Such components do not necessarily correspond with single DOE parameters; 

they can be combinations of them, too. 

Before applying PCA, the data had to be transformed. First, the sensor signals were smoothed using a CFC60 

filter [24], and simulations suffering numerical instabilities were removed. Second, the sensor output time series 

were arranged line-wise. Each column was a discrete timestamp from a particular sensor as a dimension. Third, 

each line contains the data from one FE-simulation as samples. Last, each dimension/column was standardised by 

subtracting the dimension's mean value from each sample and then dividing it by the standard deviation. 

Applied to the dataset of 50th percentiles, as displayed in Figure 4, the first principal component explains ca. 38 % 

of the variance and the second additionally ca. 14 %. A 6x6 field of distinct islands is observable. The first 

component could be associated with the six discrete impact speed settings, and the second one with the six discrete 

backrest angle settings from the DOE. Despite the relatively low explained variance of the principal components, 

only the first one was used for further processing since it could have been associated with the impact velocity and 

for simplicity in showcasing the actual decision-making method. 

 
Figure 4. Result of PCA analysis 

Due to the dimensional reduction, it was possible to differentiate between interpolation and extrapolation. 

Therefore, data from the interpolation field was used for training and testing the metamodel. The data from the 

extrapolation field was used for validation. 
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     Generated alternatives In combination with the given database of physical models, the selected architecture 

allows to investigate numerous alternatives to create a metamodel. First, the calibration was varied between the 

50th percentile and the other edge percentiles. Second, the calibration contained aChest,a3ms, xHead,Local, or both. Third, 

the same variation was used for the predictions. Those labels can be defined in two or more classes or as 

continuous values. The number of predictable percentiles is directly dependent on the used calibrators. A 

percentile used as a calibrator cannot be utilised in the predictions. Finally, the hyperparameters of the neural 

network (number of layers, number of neurons per layer) were varied. The first component of the PCA on the 50th 

percentile data was selected characterise to the environment. Through this, the interpolation field could be varied 

as well as the number of simulations in it. In total, 12,960 alternatives were generated. 

Initial List of Criteria 

     Brainstorming phase Following the method described above, the three categories, metamodel-setup-cost, 

usage, and validity-range, were defined in the first step. Those categories represent the live cycle cost and use 

factors. Next, a group of experts filled the categories with relevant criteria in a brainstorming session. 

Criteria in the metamodel-setup-cost category should assess all occurring costs associated with creating a 

metamodel. Therefore, the category was differentiated into the cost for the physical simulation database, the 

training costs, the testing, and the assessment of the validity range. 

The usage category focuses on the live cycle phase in which the metamodel is utilised. In this phase, costs for 

each prediction exist, but the value of the predictions is also shown. 

For the last category, the validity range, it is assumed that at one point, the vehicle under development deviates 

so much from the ones used for the metamodel setup that its validity is compromised. In this case, costs for 

retraining or tuning will occur. 

     Review & specification phase After the brainstorming session, the experts reviewed and restructured the 

criteria and defined their reporting scales. The selected criteria are discussed below and are listed in Table 4 of 

the appendix. As documented in the table, ultimately, not all criteria were found to be implementable. 

As metamodel-setup-costs, criteria assessing computation time and the number of simulations or samples were 

accounted. It was differentiated between computation time for the crash and occupant simulations (~ 3 h, ~ 3 min). 

Computation time reports on a continuous scale whereas the sample number on a discrete scale. For both, lower 

is seen as better. 

In the usage section, the use and value of a metamodel were locked from several angles. First is the value from 

the prediction type; a binary classification is seen to have a lower value than a continuous regression. A rating 

system was used as a metric. Second, a single sensor's output detail can determine the value. With decreasing 

value, the prediction of the entire sensor output as time series, the prediction of relevant output characteristics, 

and finally, the prediction of a single value was defined in a rating system. Third, a crash test dummy is 

instrumented with numerous sensors. More the sensors are used, higher the value. This criterion was defined as 

the number of not used sensors to fit into the lower-is-better scheme. Of course, not all sensors have the same 

relevance. The defined criterion reports by relevant legislation, consumer ratings, and physics in a ranking scale. 

Finally, the granularity of the predicted anthropometrical configuration can range from a single configuration over 

distinct percentiles up to the variation of anthropometrical measures. 

The most apparent and commonly used criterion is the prediction quality metric. For regression, the coefficient of 

determination 𝑅2 was used. For classification cases, the F-score was selected. Both metrics report to a continuous 

scale where one is the best. The 𝑅2-score can take negative values; to adapt its scale to F-score, equation (13) was 

defined. 

𝑅2 = { 0 if 𝑅2 < 0 
𝑅2 if 𝑅2 ≥ 0

 (13) 

 

As described above, the environment was characterised as 1D through PCA. As the value of a metamodel 

increases, a new environment can differ from more the training field without compromising the model's validity. 

The machine learning metric was evaluated, as displayed in Figure 5, for the inter- and extrapolation zones 

separately to assess the width. Each zone was split into three segments to get a gradual result. It must be noted 

that a machine learning metric is a statistical measure and hence, needs an appropriate sample size to deliver a 

valid assessment [25]. Finally, the width results from the area in which the machine learning metric is continuously 

higher than 0.8. The assessed machine learning score was defined as the mean value of the machine learning 

metric over that width. Again, the machine learning metric was subtracted from one to achieve the lower-is-better 

scale, and the width was multiplied by minus one. 
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Figure 5. Concept of interpolation, extrapolation, and validity range 

Final List of Criteria 

To review the listed criteria and filter them, they were assessed in the 12,960 sample alternatives. For statistical 

insight, the Kendall correlation coefficient was used. This coefficient considers the rank correlation between two 

criteria and can deal with limited non-linearity and outliers. 

The purposes of the correlation analysis were to support (i) the identification of double-assessed properties and 

(ii) the reasonability of the assessments. A few mistakes and misalignments in the assessment algorithms could 

be identified during this process. Furthermore, some criteria were found to be correlated or invariant. 

Invariance of criteria occurred since the sample alternatives did not cover all possibilities identified by the experts. 

Such criteria were kept. Highly correlated criteria were merged. 

Criteria related to computation time were under discussion. The values used for the computation time of the FE-

models for crash and occupant simulation were average values; hence reliable. In contrast, the times from the 

instrumented assessment codes were measured only once. Hence, disturbances on the CPU, e. g. other processes, 

can lead to incomparable times for computation. However, for this paper, it was possible to run the process on a 

CPU exclusively. A statistical univariant analysis showed no extreme outliers; an example is shown in Figure 6. 

On this base, it was decided to keep those criteria since no adequate alternative could be identified. 

 

Figure 6. Computation time distribution with and without disturbances 

Ultimately, 28 criteria were selected for further usage. During the selection process, 15 criteria were dropped. 

Also, the not implementable ones were removed. The final list is provided in Table 5 of the appendix. 

Multi-Attribute Decision Making 

     Sorting method The alternation of the original PROMETHEE algorithm proposed by Calders et al. was 

implemented. The sorting-based method was described for a maximise-problem and a linear preference criterion. 

In comparison, the here used implementation inverted the comparing algorithm to a minimise-problem. The lowest 

order scale type in the final list of criteria was the ordinal scale. Hence, only the usual criterion could be used. 

The algorithm was adapted accordingly. For sorting, the MERGESORT algorithm was used. The final algorithm, 

as implemented, is displayed in Table 3. 

The 12,960 sample alternatives with 28 criteria were divided into 40 chunks to check the algorithm and compare 

the computation time. Each chunk was assessed by implementations of the original PROMETHEE algorithm and 

the one with the Calders modification. Running on a workstation as a single CPU process, the median computation 

time of the original algorithm was 80.1 s and of the sorting method 0.1 s. The PROMETHEE II net-flows were 

within the limits of the computational precision same. The equality of both approaches and the drastically lower 

time complexity of the sorted approach was confirmed. 
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Table 3. 

Algorithmic representation of PROMETHEE II implementation 

Input: Number of alternatives 𝑛, Number of criteria 𝑞, criteria values assessed for all alternatives 𝑓1…𝑞(𝑎1…𝑛) 

Return: Net-flows 𝜙(𝑎1…𝑛) 

1 SET 𝑤 TO 1 𝑞⁄  # Equal weight per criterion 

2 INIT 𝜙1…𝑞[𝑎1…𝑛] # Uni-criterion net-flow 

3 FOR 𝑘 IN 𝑓[𝑎0]  

4  INIT 𝜙𝑘
+/−[𝑎1…𝑛] # Uni-criterion in- / out-flow 

5  FOR 𝕊 IN [1, -1]: # In- & outflows 

6   SET 𝕗𝑘(𝑎) TO 𝑓𝑘(𝑎) ∗ 𝕊 # Symmetry of flows 

7   SET 𝕗𝑘(𝕒) TO SORTED_DESCENDING 𝕗𝑘(𝑎)  # Merge Sort (𝑎 differs from 𝕒 only in its order) 

8   SET 𝑅 TO 𝕗𝑘(𝕒) # For the first object, all others are on the right 

9   SET 𝜙𝑘
𝕊[𝕒1] TO 0 # The first alternative in order always has flow 0 

10   FOR 𝑖 IN 𝕒2…𝑛: # Loop over the following alternatives in order 

11    SET 𝜙𝑘
𝕊[𝕒𝑖] TO 𝜙𝑘

𝕊[𝕒𝑖−1] # Start with the previous flow 

12    WHILE 𝑅[𝕒1] > 𝕗𝑘[𝕒𝑖] # Check for preference 

13     DELETE 𝑅[𝕒1] # Move to left 

14     SET 𝜙𝑘
𝕊[𝕒𝑖−1] TO 𝜙𝑘

𝕊[𝕒𝑖−1] +
1

𝑛+1
 # Add as the preference to uni-criterion in- / out-flow 

15  FOR 𝑖 IN 𝑎1…𝑛  

16   SET 𝜙𝑘(𝑎𝑖) TO 𝜙𝑘
+(𝑎𝑖) − 𝜙𝑘

−(𝑎𝑖) # Uni-criterion net-flow 

17 INIT 𝜙(𝑎1…𝑛) # Net-flow 

18 FOR 𝑖 IN 𝑎1…𝑛  

19  SET 𝜙(𝑎𝑖) TO ∑ (𝑤 ∗ 𝜙𝑘(𝑎𝑖))
𝑞
𝑘=1  # Net-flow 

 

     Result For the final assessment, all alternatives were tested as a whole and sorted by their PROMETHEE II 

complete pre-order. As defined above, seven parameters were varied: (i) the configuration of the neural network, 

(ii) prediction type, (iii) target percentile(s), (iv) calibrating percentile(s), (v) sample size, (vi) interpolation range, 

(vii) sensor(s) used in target(s), and (viii) sensor(s) used in feature(s). The tendencies, observed in Figure 7, are 

described below. 

 
Figure 7. Net-flows evaluated for 12,459 alternatives – box plots with top 10 overlay 



   

 

Plaschkies 10 

The results indicated a negative influence of sample size on the rank. One reason can be the increased cost of data 

generation, while other factors overlay the potential positive influence on the prediction quality. 

Furthermore, the regression algorithms seemed slightly better than the others. The 95th or 5th percentile prediction 

seemed to be more successful than simultaneously targeting both. Predicting the 95th percentile is indicated as 

beneficial. Using the 50th percentile as a calibrator seems to be better than the 5th or 95th percentile. Taking the 5th 

and 95th percentile as calibrators does not seem advantageous. Finally, it seems that a tighter interpolation field 

has light benefits. The other varied parameters do not indicate preferences. 

Concluding, the alternatives could be ranked using PROMETHEE II. The first analysed tendencies seem to be 

reasonable. In general, settings which compromise the prediction value have a strong influence. 

DISCUSSION 

The process of deriving the list of criteria seems, overall, a good concept. Nevertheless, the strong dependency of 

all steps on the knowledge and judgement of the involved experts must be pointed out. 

The results of a brainstorming process can be unorganised, and there is no guarantee of completeness. 

Additionally, there is a chance for non-implementable criteria. The pre-declaration of some categories 

representing the main cost and use factors was very helpful. It is highly recommendable to invest already during 

that first phase in documenting each criterion's intentions. In the last review step, each criterion should be 

described extensively, helping to keep the overview and to succeed in the later steps. Concluding, with the 

proposed process, a comprehensive list can be created. 

For the sake of simplicity, it seems recommendable to define all scales in a lower is a better manner. However, 

this is not required by algorithms as PROMETHEE. Furthermore, the ordinal scale can be applied to all criteria 

and can be assessed transparently. However, the choice of this scale limits the usable decision-making methods. 

Already using another preference function within PROMETHEE would transform the scale unwanted and 

unreasonably into a ratio scale [19]. 

As stated above, a set of test samples cannot represent all possible variations. The high number of alternatives 

used in this paper was mainly motivated to ensure a good range of variation and to enable the investigation of 

correlations. In the end, the correlations did not lead to a data-driven decision over the criteria. However, as a tool 

to detect unplausible behaviour, it was invaluable. It can be achieved with a significantly smaller number of test 

alternatives. By experts' judgement, a minimum number covering a maximal range of variations can be defined. 

The results from the ranked alternatives originate in the 2D FE-model. A significant limitation can be found in 

the characterisation of the environment. First, the explained variance seemed insufficient even if the dimensional 

reduction showed a physically relatable result. In future studies, a detailed analysis on the base of a validated FE-

model should be conducted and the method for dimensional reduction refined. Second, especially the criteria were 

defined for the narrow use case of supervised machine learning for the virtual assessment of occupant crash safety. 

If the method should be applied in deviating domains, each step starting with the declaration of the initial 

categories, should be reviewed. Depending on the complexity, increasing the number of test samples seems apt. 

If changing the MADM method, the investigations on its behaviour and the parametric sensitivity should be done. 

Furthermore, especially if the exact rank of the assessed alternatives is relevant, the rank reversal issue of pairwise 

comparison-based methods, in general, but especially PROMETHEE II, should be assessed. 

CONCLUSIONS AND OUTLOOK 

The selection of an appropriate setup of a machine learning architecture and its pipeline was framed as a multi-

attribute discussion-making problem. The proposed method was developed for a rapid occupant safety assessment 

with a particular supervised learning setup.  

The proposed method consists of the decision-making preparation containing (i) the definition of an initial list of 

criteria and (ii) the review of them using sample alternatives, leading to (iii) the definition of the final criteria list. 

From the literature research, the PROMETHEE II decision-making method was selected. A version of the sorting-

based algorithm proposed by Calders et al. was implemented. 

The method was tested on data from a finite element model in the validation part. A final list of criteria was 

developed and used to rank sample alternatives resulting from a parameter variation. First tendencies of the 

influence of the alternative's parameters on its rank could be identified. 

The method was discussed, and recommendations were derived. Overall, a high dependency on expert knowledge 

was identified. For the criteria, ordinal scales seemed apt. PROMETHEE II, with the sorting algorithm, delivered 

a plausible and distinct ranking, and the time complexity allowed the assessment of an immense number of 

alternatives simultaneously. 

The method should be applied to a database based on a more realistic and validated finite element model. Further 

research will be dedicated to the vehicle characterisation for more than one dimension and to the dimensional 

reduction approach. The increasing need for efficient assessment methods will fuel further validation. 
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APPENDIX 

Table 4. 

Initial list of criteria 

Metamodel Setup Cost 

 Database Setup 

1 setup_db_num_sim_calibration_pprediction Calibration simulations per environment (= per prediction)  

2 setup_db_num_sim_calibration_sum Total number of calibration simulations in database  

3 setup_db_num_sim_crash Total number of crash simulations in database  

4 setup_db_num_sim_occupant Total number of occupant simulations in database  

5 setup_db_num_sim_assessment Total number of samples used for metamodel assessment  

6 setup_db_num_sim_training Total number of samples used for metamodel training  

7 setup_db_comp_time_calibration Computation time for calibration simulations per prediction  

8 setup_db_comp_time_crash Total computation time of all crash simulations in database  

9 setup_db_comp_time_occupant Total computation time of all occupant simulations in database  

10 setup_db_comp_time_assessment Total computation time of for assessment used samples  

 Training Phase 

11 setup_training_comp_time_metamodel C   u             f       d  ’            

12 setup_training_comp_time_assessment_sum C   u             f       d  ’             on training data  

13 setup_training_comp_time_assessment_pprediction Computation time for single prediction by metamodel  

14 setup_training_comp_time_calibration Total computation time for calibration simulations used in training  

15 setup_training_calibration_sum Number of calibration simulations used for training  

16 setup_training_calibration_pprediction Calibration simulations per environment (= per prediction)  

17 setup_training_num_sim_crash Total number of crash simulations used for training  

18 setup_training_num_sim_occupant Total number of occupant simulations used for training  

19 setup_training_num_sim_assessment Number of samples used for assessing in training phase 
(equals number of samples for training)  

N/A 

20 setup_training_comp_time_crash Total computation time for crash simulations used for training  

21 setup_training_comp_time_occupant Total computation time for occupant simulations used for training  

22 setup_training_comp_time_assessment Total computation time of all for assessment used samples during 
training (equals computation time of simulations for training) 

N/A 

 Interpolation Assessment Phase 

23 setup_test_comp_time_assessment_sum C   u             f       d  ’             (   d       )  

24 setup_test_comp_time_assessment_pprediction Computation time for single prediction by metamodel  

25 setup_test_comp_time_calibration Total computation time for calibration simulations used for assessment  

26 setup_test_calibration_sum Number of calibration simulations used for assessment  

27 setup_test_calibration_pprediction Calibration simulations per environment   

28 setup_test_num_sim_crash Total number of crash simulations used for assessment  

29 setup_test_num_sim_occupant Total number of occupant simulations used for assessment  

30 setup_test_num_sim_assessment Total number of for assessment used samples  

31 setup_test_comp_time_crash Total computation time for crash simulations used for assessment  

32 setup_test_comp_time_occupant Total computation time for occupant simulations used for assessment  

33 setup_test_comp_time_assessment Total computation time of all for assessment used samples 
(occupant & crash) 

N/A 

 Validity (Extrapolation) Assessment 

34 setup_val_comp_time_assessment_sum Total computation time for predictions in extrapolation range  

35 setup_val_comp_time_assessment_pprediction Computation time for single prediction by metamodel  

36 setup_val_comp_time_calibration Total computation time for calibration simulations used for assessment N/A 

37 setup_val_calibration_sum Number of calibration simulations used for assessment N/A 

38 setup_val_calibration_pprediction Calibration simulations per environment N/A 

39 setup_val_num_sim_crash Total number of crash simulations used for assessment N/A 

40 setup_val_num_sim_occupant Total number of occupant simulations used for assessment N/A 

41 setup_val_num_sim_assessment Total number of for assessment used samples N/A 

42 setup_val_comp_time_crash Total computation time for crash simulations used for assessment N/A 

43 setup_val_comp_time_occupant Total computation time for occupant simulations used for assessment N/A 

44 setup_val_comp_time_assessment Total computation time of all for assessment used samples 
(occupant & crash) 

N/A 

Usage 

45 us_metamodel_num_sim_calibration Calibration simulations per environment  

46 us_metamodel_time_sim_calibration Computation time for calibration simulations per environment  
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47 us_metamodel_time_prediction Computation time for single prediction by metamodel  

48 us_prediction_type Value of prediction type (binary classification to regression)  

49 us_prediction_outputs Degree of detail of predictions (single value to full sensor time series)  

50 us_prediction_sensor_num Number of not used sensors of available sensors in dummy  

51 us_prediction_sensor_relevance Relevance of used sensors (irrelevant to utilized in legislation)  

52 us_prediction_anthropometrics Detail of degree of anthropometrical distinction  

53 us_MLmetric Value from assessed metric  

Validity Range 

54 val_range Width of validity range  

55 val_range_retraining Cost to retrain the metamodel N/A 

N/A – not implemented 

Table 5 

List of final criteria 

 Name Description 

1 setup_db_num_sim_crash Total number of crash simulations in database 

2 setup_db_comp_time_crash Total computation time of all crash simulations in database 

3 setup_db_num_sim_assessment Total number of samples used for metamodel assessment (test & validation) 

4 setup_db_num_sim_training Total number of samples used for metamodel training 

5 setup_training_calibration_sum Number of calibration simulations used for training 

6 setup_training_comp_time_assessment_pprediction Computation time for single prediction by metamodel 

7 setup_training_comp_time_assessment_sum C   u             f       d  ’             (   d       ) on training data 

8 setup_training_comp_time_calibration Total computation time for calibration simulations used in training 

9 setup_training_comp_time_crash Total computation time for crash simulations used for training 

10 setup_training_comp_time_metamodel C   u             f       d  ’           

11 setup_training_num_sim_crash Total number of crash simulations used for training 

12 setup_training_num_sim_occupant Total number of occupant simulations used for training 

13 setup_test_comp_time_crash Total computation time of all crash simulations in database 

14 setup_test_num_sim_crash Total number of crash simulations used for assessment 

15 setup_test_comp_time_assessment_sum C   u             f       d  ’             (   d       ) 

16 setup_test_calibration_sum Number of calibration simulations used for assessment 

17 setup_test_num_sim_occupant Total number of occupant simulations used for assessment 

18 setup_test_comp_time_assessment_pprediction Computation time for single prediction by metamodel in test phase 

19 setup_val_comp_time_assessment_pprediction Computation time for single prediction by metamodel in validation phase 

20 setup_val_comp_time_assessment_sum Total computation time for predictions in extrapolation range 

21 us_Mlmetric Value from assessed metric; F-score for classification / R²-score for regression 

22 us_prediction_anthropometrics Detail of degree of anthropometrical prediction, grades, where 1 is best 

  5     1 percentile 

  4      2 percentiles 

  3   3-4 percentiles 

  2   ≥ 5             

  1   Anthropometrical parameter 

23 us_prediction_outputs Degree of detail of predictions, grades, where 1 is best 

  3   Single value 

  2   Relevant characteristics 

  1   Full sensor time series 

24 us_prediction_sensor_num Number of not used sensors 
(reference are available sensors of used dummy) 

25 us_prediction_sensor_relevance Relevance of used sensors, grades, where 1 is best 

  4   Irrelevant 

  3   Physics relevant 

  2   Utilized in consumer tests 

  1   Utilized in legislation 

26 us_prediction_type Value of prediction type, grades, where 1 is best 

  5   Binary classification ( .  .         , u         ) 

  4   3 classes 

  3   4-5 classes 

  2   ≥ 6         

  1   Regression 

27 us_metamodel_num_sim_calibration Calibration simulations per environment 

28 val_range Width of validity range 
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